ASSESSMENT OF MEDICAL OCCUPATIONAL RADIATION DOSES IN COSTA RICA

Patricia Mora* and Mauricio Acuña
Centro de Investigación en Ciencias Atómicas, Nucleares y Moleculares
Universidad de Costa Rica (UCR)
San Jose, COSTA RICA
patricia.mora@ucr.ac.cr
Introduction

- Assessment of doses of medical personnel is an integral part of our national radiation protection program.

- The individual monitoring programme for external radiation exposure of medical staff in the Social Security System is done by the University of Costa Rica (UCR).

- The objectives of this project is to provide national authorities with:
 - Information for optimization of radiation protection actions
 - Demonstrate that the worker`s exposure has not exceeded dose limits
 - Verification of workplace monitoring and radiation protection culture

- The UCR has been in charge of individual monitoring since May 2007; before that time different vendors provided the service in not a very reliable way.

- The UCR has the only laboratory with equipment in the country.
Materials and Methods: Medical Staff monitored

- Social Security System has hospitals and clinics all along the country
- Majority of radiation workers are in the big metropolitan area (Fig 4)
- Distribution of monitored medical personnel is as follows:
 - 83% in diagnostic radiology
 - (33% radiology and 67% interventional procedures),
 - 6% in nuclear medicine
 - 6% in radiotherapy.
- Dosimeters are worn at the chest under apron
- Monthly monitoring periods were established by Regulatory Authorities
- Data presented in this study is from the period August 2008 to July 2010.
- Corresponding to 1750 medical workers.
Materials and Methods: Instrumentation

The instrumentation that the UCR has to measure equivalent dose in medical staff is:

- TLD readers: Harshaw Model 4500 and 6600Plus (Fig.1 and 2)
- TLD card holders: Harshaw Model 8814 with TLD cards: Harshaw Model 21C004 with TLD-100 chips in positions 2 and 3 for Hp(10) and Hp(0.07) respectively (Fig.3)

Additional instrumentation: Sr90/Y90 irradiator, TLD oven and Cs137 source
Materials and Methods: TLD Laboratory at UCR

- National cooperation technical projects with the IAEA started the implementation of a TLD Laboratory at the UCR back in the year 1994.
- In 1999, the National Authority granted the licensee to do personal monitoring.
- The UCR, in order to proof technical competence of the test started to seek the ISO/IEC 17025:2005 accreditation.
- The TLD laboratory has a Quality Management in place.
- All calibrations of the system are made using IAEA network of SSDL in Latin America.
- The laboratory has participated in a NVLAP exercise passing the ANSI standard:
- Costa Rican National Accreditation Body evaluated the lab on August-2010.

Final accreditation certificate is pending.
Results: main 3 practices

Graph 1 presents the monthly 75 percentile for Hp(10) for the main 3 areas: radiology, nuclear medicine and radiotherapy. As seen, nuclear medicine has higher staff doses as expected, no significant different is appreciated between radiology and radiotherapy staff. The decrease for the period July-August 2009 in nuclear medicine correspond to shortage of Tc99 supplies in the country.
Results: main 3 practices

- *Table 1* presents the 75 percentile for Hp(10) based on all monthly values for all workers in each area (radiology, nuclear medicine and radiotherapy).

- *Table 2* presents the annual Hp(10) for the main 3 areas radiology, nuclear medicine and radiotherapy.

TABLE 1: Monthly Hp(10) in mSv

<table>
<thead>
<tr>
<th>Year</th>
<th>Radiology</th>
<th>Nuclear Medicine</th>
<th>Radiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.06</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>2009</td>
<td>0.05</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>2010</td>
<td>0.04</td>
<td>0.13</td>
<td>0.05</td>
</tr>
</tbody>
</table>

TABLE 2: Annual Hp(10) in mSv

<table>
<thead>
<tr>
<th>Year*</th>
<th>Radiology</th>
<th>Nuclear Medicine</th>
<th>Radiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.14</td>
<td>0.82</td>
<td>0.11</td>
</tr>
<tr>
<td>2009</td>
<td>0.39</td>
<td>1.52</td>
<td>0.53</td>
</tr>
<tr>
<td>2010</td>
<td>0.23</td>
<td>0.82</td>
<td>0.33</td>
</tr>
</tbody>
</table>

*Years: 2008 and 2010 based on 5 and 6 months respectively.
Results: interventional practices

- *Graph 2* presents the monthly 75 percentile for Hp(10) for radiology departments differentiated from interventional (e.g. gastroenterology, cardiology, neurosurgery, orthopedics, etc).

- Regarding the annual 75 percentile for Hp(10) in 2009, radiology departments have 0.39 mSv and interventional departments have 0.43 mSv. Both personnel receive radiation protection courses every 2 years.
Conclusions

Assuming our reported Hp(10) doses as an adequate surrogate for effective dose for Costa Rican medical staff:

- From Table 2, results on annual effective doses for radiology (0.39 mSv), nuclear medicine (1.52 mSv) and radiotherapy (0.53 mSv) compare to UNSCEAR 2008 reported world values 0.5 mSv; 0.7 mSv and 0.5 mSv respectively indicates good agreement on radiology and radiotherapy but a much higher value for nuclear medicine.

- No significance difference is seen so far between radiology and interventional radiology staff. (Further analysis on different sub-categories would be investigated since cardiologist usually received higher doses).

- Results from individual monitoring programs, such as the one held by the UCR, allows national authorities to optimize radiation protection practices (for example a further analysis should be perform on nuclear medicine staff doses).

- There is now a centralized dose record keeping for medical staff. UCR also has industrial and research workers.
BIBLIOGRAPHY

